
AD-A274 193ElUUlllh

EECTE

Synthetic BattleBridge:
Information Visualization and User Interface

Design Applications in a Large Virtual
Reality Environment

THESIS

Kirk G. Wilson, Capt, USAF
AFIT/GCS/ENG-93D-26

This document ncas De~ezacpptoved

to? public releas. and =o-t; its
distribution is un±ii.ited.

93"31004

93 12 22 1 17II/IIIIII//I//III/III/

AFIT/GCS1ENG-93D-26

Synthetic BattleBridge:
Information Visualization and User Interface
Design Applications in a Large Virtual Reality

Environment

Thesis

Presented to the Faculty of the Graduate School of Engineering
of the Air Force Institute of Technology

Air University
In Partial Fulfillment of the

Requirements for the Degree of
Master of Science in Computer Systems

Kirk G. Wilson
Captain, USAF
December 1993

Preface

I would like to thank Capt Brian Soltz for teaching me the incremental

software development method and for making up half of the best team at

AFIT (at least in the ability to work late hours). Thanks also to the other

members of the simulation cadre: Major Mike Gardner, Capt Matt Erichsen,

Capt Bill Gerhard, Capt Andrea Kunz, Capt Mark Snyder, and Mr Steve

Sheasby. And thanks to Capt Alain Jones for the photography assistance.

I would also like to thank Lt Col Martin Stytz for his patience and

guidance during a sometimes tumultuous seven months of development

and coding. Thanks to Lt Col Phil Amburn and Lt Col Patricia Lawlis, the two

other members of my thesis committee.

To my wife Karen and my four sons Daniel, Thomas, Matthew, and Ryan:

I missed you greatly and can't wait to see you again.

Kirk Wilson
27 Nov 93

Accesioh For

NTIS CRA&I
DTIC TAR -

By.........-...
Di t'ibution!

Avý:i a.'.d I o
Dist Special

DTI ;,aALm iNEYECTZP 3

Table of Contents

Preface ... ii

Table of Contents .. iii

List of Figures ... vii

Abstract ... viii

1. Introduction ... 1

1.1 Background .. 1

1.2 Problem ... 1

1.3 Assumptions ... 2

1.4 Scope ... 2

1.5 Research Conduct ... 3

1.5.1 Virtual Reality Background .. 4

1.5.2 Tomorrow's Reality Gallery (SIGGRAPH '93) ... 4

1.5.3 Enhancements to Synthetic BattleBridge ... 5

1.5.3.1 Navigation ... 5

1.5.3.2 Inform ation .. 6

1.5.3.3 Interface Development .. 6

1.5.4 Thesis Preparation & Defense .. 6

1.6 M aterials and Equipment ... 7

1.6.1 Hardware .. 7

1.6.2 Software .. 7

1.7 Complementary Efforts ... 7

1.7.1 Fuzzy Logic Sentinel ... 7

1.7.2 ObjectSim ... 8

1.7.3 Object M anager ... 8

1.7.4 Virtual Cockpit ... 8

1.7.5 Red Flag .. 8

1.7.6 Satellite M odeler ... 9

1.8 Schedule .. 9

2. Background .. 10

2.1 Introduction ... 10

2.2 Future .. 11

2.2.1 A Vision for the Future ... 11

Iiii

2.2.2 No Interface to Design ... 12

2.3 Status .. 13

2.3.1 A Tutorial ... 13

2.3.2 Object Data M anipulation .. 14

2.3.3 Terrain Data M anipulation .. 14

2.4 Conclusion .. 15

3. Design ... 17

3.1 SBB User Interface Design and Functionality ... 17

3.1.1 Description ... 18

3.1.2 Information Grid Design .. 21

3.1.3 FakeSpace BOOM Interface .. 22

3.1.4 Head M ounted Display Interface .. 23

3.2 Synthetic BattleBridge Simulation Design ... 24

3.2.1 ObjectSim ... 25

3.2.1.1 Sim ulation ... 26

3.2.1.2 View ... 27

3.2.1.3 Attachable Player .. 27

3.2.1.4 Terrain ... 28

3.2.1.5 Renderer ... 28

3.2.2 Object M anager ... 29

3.3 SBB Top Level Design .. 30

3.3.1 SBB Simulation Objects .. 32

3.3.1.1 SBB Application .. 33

3.3.1.2 SBB View ... 33

3.3.1.3 Shadow ... 34

3.3.1.4 Stealth ... 35

3.3.1.4.1 Stealth View Types .. 36

3.3.1.4.2 Stealth View Controls ... 37

3.3.1.5 SBB Net M anager .. 37

3.3.1.6 SBB Net Player .. 38

3.3.1.7 Locator ... 39

3.3.1.8 Trail .. 40

3.3.1.9 M odel M anager .. 41

3.3.1.10 Clock ... 41
3.4 Interface and Other Object Design .. 42

iv

3.4.1 Player Button ... 42

3.4.2 SBB Button ... 43

3.4.2.1 Rect Button .. 45

3.4.2.2 Push Button .. 45

3.4.2.3 Light Button .. 45

3.4.2.4 Hideable Button .. 45

3.4.2.5 Display Button .. 46

3.4.2.6 M enu Button ... 46

3.4.3 Drawstring ... 46

3.4.4 Mac Sounds ... 47

3.5 Conclusion .. 47

4. Im plementation ... 48

4.1 Overview .. 48

4.2 Object Im plementation ... 49

4.3 SBB Top Level Interaction ... 49

4.3.1 SBB Simulation Objects .. 50

4.3.1.1 SBB Application (sbb-app.cc) .. 51

4.3.1.2 SBB View (color_.view .cc) .. 52

4.3.1.3 Shadow (shadow .cc) .. 53

4.3.1.4 Stealth (stealth.cc) .. 53

4.3.1.4.1 Stealth draw .. 53

4.3.1.4.2 Stealth propagate ... 54

4.3.1.5 SBB Net M anager (sbb-neL mgr.cc) ... 55

4.3.1.6 SBB Net Player (sbb-net-player.h) ... 57

4.3.1.7 Locator (sbb-neLplayer.h) .. 57

4.3.1.8 Trail (sbb-trail.cc) .. 58

4.3.1.9 M odel M anager (model..mgr.cc) .. 58

4.3.1.10 Clock (clock.cc) .. 61

4.4 Interface and Other Object Design ... 61

4.4.1 Player Button (play-button.cc) .. 61

4.4.2 SBB Button (button.cc) ... 62

4.4.2.1 Rect Button : SBB Button ... 65

4.4.2.2 Push Button : Rect Button .. 65

4.4.2.3 Light Button : Push Button .. 66

4.4.2.4 Hideable Button : Push Button .. 66

V

4.4.2.5 Display Button : Light Button .. 66

4.4.2.6 Menu Button : Push Button ... 67

4.4.3 Drawstring ... 67

4.5 Problems and Praise ... 68

4.6 Conclusions .. 68

5. Results, Future W ork, and Conclusions ... 69

5.1 Results ... 69

5.1.1 Performance ... 69

5.1.2 User Interface ... 69

5.1.2.1 Transparent Dynamic Display Buttons ... 70

5.1.2.2 Views and State ... 71

5.1.2.3 Players ... 73

5.1.2.4 Navigation (Position and Orientation) ... 74

5.1.2.5 Interface M anipulation .. 75

5.2 Future W ork .. 75

5.2.1 Voice Interaction .. 76

5.2.2 In Scene Buttons ... 76

5.2.3 3D Sound ... 77

5.2.4 Selection of Objects in the Scene .. 77

5.2.5 Efficient Algorithms for Object Processing ... 78

5.2.5.1 Too Many Objects/Tine Slice Processing 78

5.2.5.2 Culling/Drawing Bottleneck/Level of Detail Management 79

5.2.5.3 Unseen Objects Require Processing Too/Range Processing 80

5.2.6 Abstract Visualization of Force Distributions ... 80

5.2.6.1 Grid Architecture ... 81

5.2.6.2 Terrain Partitioning .. 81

5.2.6.3 Forces Partitioning .. 81

5.2.6.4 3D Chessboard ... 82

5.3 Conclusions .. 82

References .. 83

Vita .. 85

vi

List of Figures

Figure 2-1 Fully Immersive Virtual Reality Suit (3) .. 12

Figure 3-1 The SBB User Interface ... 18

Figure 3-2 Active Translation Button .. 19

Figure 3-3 Active Heading Button ... 20

Figure 3-4 The Information Grid ... 22

Figure 3-5 FakeSpace BOOM .. 23

Figure 3-6 Polhemus LookingGlass Head-Mounted Display ... 24

Figure 3-7 The ObjectSim Object Model ... 26

Figure 3-8 The Synthetic BattleBridge Task Object M odel/Design 31

Figure 3-9 The Shadow Object Offset .. 35

Figure 3-10 The Object Manager/SBB Net Manager Design ... 38

Figure 3-11 Air Vehicle Locator ... 39

Figure 3-12 Ground Vehicle Locator ... 40

Figure 4-1 A Model Manager Example .. 60

Figure 4-2 A Model Manager Data File .. 60

Figure 5-1 The Transparent User Interface .. 70

Figure 5-2 The View & Player Buttons .. 72

Figure 5-3 The Information Grid ... 73

Figure 5-4 The Navigation Controls ... 75

vii

AFIT/GCS/ENG-93D-26

Abstract

With shrinking budgets and fewer personnel, future military training will

rely heavily on simulated environments. The goal for this training is to

reduce cost while maintaining readiness and unparalleled capability for all

levels of military command.

This thesis effort, the Synthetic BattleBridge (SBB), provides a real-time

simulated environment for military commanders to observe on-going

computer simulations of varying participation levels and helps them wring

the most from a simulation. The SBB, designed for higher ranking personnel

with little time to spend learning how to run the system, must exhibit three

capabilities: ease-of-use, long-term retention, and adaptability.

Based on the ObjectSim framework and the Object Manager network

management software, the SBB includes a unique transparent interface with

dynamic display elements that ensures minimal intrusion. The SBB

provides multiple views and direct attachment to simulation players, along

with an information grid showing the distribution of forces within the

current environment.

v.fi

Synthetic BattleBridge:
Information Visualization and User Interface Design Applications in

a Large Virtual Reality Environment

1. Introduction

1.1 Background

With shrinking budgets and fewer personnel, future military training will

rely heavily on simulated environments. The goal for this training is to

reduce cost while maintaining readiness and capability unparalleled in the

world. To make this happen, researchers must solve several problems, some

hardware-related, some software, often both.

My research furthers the software knowledge base by providing a user

interface management system (UIMS) for managing objects and information

in a synthetic environment. I developed this system as an enhancement to

the Synthetic BattleBridge (SBB) system, a real-time simulated environment

for military commanders to observe on-going computer simulations of

varying participation levels.

1.2 Problem

Specifically, I address navigation and information displays in a large,

distributed simulation environment. Using current hardware and software

technology, I developed navigation controls and information displays that

exist to help the user wring the most from the system. Since the SBB is

designed for higher ranking personnel with little time to spend learning how

to run the system it must exhibit three capabilities: ease-of-use, long-term

retention, and adaptability.

The first two capabilities come from a simple and straightforward interface

to a comnlex system. A dear, structured integration system, capable of

adapting to a changing environment and the needs of the user, provides the

third.

1.3 Assumptions

I used the previous SBB incarnation (9) as the basis for the capabilities

resulting from my research and implementation, with a few exceptions listed

later. The focus of this effort, enhancement of the SBB user interface and

increased frame-rate performance, required working within a new design

architecture called ObjectSim (also introduced later). This did not limit my

research, except in the time required to understand and modify the ObjectSim

framework to accommodate the desired SBB capabilities.

1.4 Scope

The SBB must be easy to use and able to "go anywhere" the user desires,

within the confines of the simulation. For ease-of-use, I attempted to blend

the interface into a natural, reality emulating, "non-interface" discussed

extensively in (6), refining the interface along a path that eventually (in some

future research) leads to its disappearance. I focused on navigation and

information displays within the system to provide an easy-to-use situational

awareness tool.

For navigation, the user selects the level of observation and then the

location and orientation of the view. Attachment to individual players

occurs using multiple scenarios. The user may also choose a mini-view inset

within the larger view (this will depend heavily on the resolution of the

chosen display device). Movement control enhancements include

2

integration of the translation device into the interface, controlling the six

directions of motion (in/out, up/down, left/right).

I also enhanced the SBB to provide a variety of information displays, each

selectable and configurable by the user:

"* orientation gauges showing the current heading, pitch, and roll

"* grid/maps showing location of objects and views within the environment
(possibly extending to terrain density/roughness, if time permits)

In conjunction with other research activities, I provided the ability to

"jump" the user to particular views (saving the state of the present view),

based on:

" fuzzy-logic" feedback on hot-spots within the environment (in
conjunction with other research)

" feedback on the history of the simulation, including trends or patterns to
monitor, or viewing older data compared to new

" the state of the view consists of the location and orientation, whether
attached to a network player, and the viewing mode (plan or flying in
scene).

1.5 Research Conduct

I conducted my thesis research in four phases, as follows:

"* Virtual Reality Background

"* Tomorrow's Reality Gallery (SIGGRAPH '93)

"* Enhancements to Synthetic BattleBridge

"* Thesis Preparation & Defense

The following sections describe each phase and the associated tasks; the

last section contains a schedule for each phase and task.

3

1.5.1 Virtual Reality Background

In this phase I focus on the current status in interface design for 3D virtual

environments, develop the background required to conduct new research,

and investigate the capabilities of the current SBB implementation.

I began by looking into the current issues relating to user interface design.

Then my research moved into the current SBB system where I reviewed the

current capabilities, design, and implementation before I developed an

ObjectSim framework for my enhancements. Conduct of additional

background research, such as learning SGI Performer (a graphics library for

the Silicon Graphics workstations used at AFIT for virtual reality

investigations) or studying new graphics/user interface issues, occurred as

needed during each succeeding phase.

1.5.2 Tomorrow's Reality Gallery (SIGGRAPH '93)

The objective for this phase involved building a subset of the main

enhancements into a form suitable for presentation at the Tomorrow's

Reality Gallery (TRG) at the 1993 Conference on Interactive Computer

Graphics (SIGGRAPH '93) at Anaheim, California held from 1 to 8 Aug 93.

The SIGGRAPH preparation schedule required that the implementation of

the majority of enhancements be in place by 7 Jul 93.

The first enhancement for SIGGRAPH involved porting the previous SBB

capabilities into the ObjectSim framework developed in the first phase with a

four-fold performance (frame-rate) improvement as the objective. Next I

developed the list of enhancements to be included in the TRG user interface

subset, envisioned as a "simple" two button arrangement centered mostly on

navigating within the simulation environment. I implemented this

4

interface along with a stereoscopic view using slightly different viewpoints-

simulating eye separation distance-and red/blue channel rendering.

In preparation for the big show, all implementations and equipment for

SIGGRAPH were transported on 27 Jul 93 to California. Preparation for

SIGGRAPH entailed training other ART students in the use of the systems

(in case of illness or absence) and generating instructions for the general

public. SIGGRAPH '93 provided a forum for showing off AFITs hard work

and was a major success.

1.5.3 Enhancements to Synthetic BattleBridge

Upon return from the SIGGRAPH conference, I had two months to

implement a representative system and prepare my thesis. Much of the

ground work was complete due to SIGGRAPH.

1.5.3.1 Navigation

I first developed the navigation aspects of the system. The navigation

controls, where the user either directly (using a movement control of some

kind) or indirectly (using either voice activated commands or icon selection)

modifies the view, was followed by the selection of views and players.

Direct movement controls functionally resemble the "stick" in a

helicopter, except movement in any direction is possible. For indirect view

manipulation, the user selects and defines viewing areas in a number of

different ways. The most useful way involves defining a list of views and

then being able to jump among the views. Other views allow attachment to

particular objects within the environment or generation of views

automatically based on some condition, based on timing, on the force

distributions, or other important events.

5

The user can attach to players visible in the scene, either by directly

selecting the player or by selecting a player identifier from the active list. The

user has the ability to narrow the list to specific types of vehicles or domains,

such as selecting only a list of air domain players.

1.5.3.2 Information

I completed the information displays when the navigation controls

implementation neared completion. This phase consisted of doing as much

as possible in the time allotted with a cutoff of 1 Oct 93. I developed the grid

to show the composition and distribution of forces within the simulation

environment.

1.5.3.3 Interface Development

In addition to the navigation controls and information displays, I

developed a new and unique interface system to enhance the look, feel, and

functionality of the SBB, to include transparent and dynamic display buttons.

I also developed an interface for a dynamic representative model tool known

as the Model Manager. In addition to these capabilities, I developed an

external application interface allowing information flow between the Fuzzy

Logic Sentinel (11) and the SBB.

1.5.4 Thesis Preparation & Defense

In this phase I prepared and then defended my thesis. Following the

defense, I reworked my thesis according to the inputs from my thesis

committee members. I defended in late-November.

6

1.6 Materials and Equipment

I used a Silicon Graphics workstation for this research along with many of

the current data input devices associated with virtual reality technology, as

follows:

1.6.1 Hardware

"* FakeSpace BOOM2M (multichannel monochrome graphics display)

"* Polhemus Head Mounted Display (HMD) & head tracker

"* Apple Macintosh Quadra 800 w/Stereo Speakers (for sound)

1.6.2 Software

C C++ compiler

* Performer software library

* MultiGen object generation facility

* Sound Generation Facility v2.0 (13)

1.7 Complementary Efforts

This thesis effort exists due to the hard work of many people besides

myself; the entire graphics research team continuously fed new ideas and

insights to the other members of the team. I benefited greatly from sharing in

the exploits of my colleagues. An overview of these efforts follows.

1.7.1 Fuzzy Logic Sentinel

Captain Brian Soltz (11) developed the Fuzzy Logic Sentinel as an add-in

to the SBB. He and I worked together on the interface between our respective

projects to provide a smooth and seamless integration of capabilities that

provides the user with enhanced situational awareness.

7

1.7.2 ObjectSim

The framework for all current AFIT synthetic environment research,

Captain Mark Snyder's ObjectSim (12) allows a wide variety of capabilities in

similarly engineered applications. His toolbox enabled the rest of the graphics

team to concentrate on features instead of form.

1.7.3 Object Manager

Mr. Steve Sheasby developed the Object Manager as a network player

monitor. The SBB and all other DIS-related applications draw heavily on the

Object Manager.

1.7.4 Virtual Cockpit

Captains William Gerhard (15) and Matthew Erichsen (14) significantly

enhanced the reality of the Virtual Cockpit (VC) simulation. Much of their

leadership into the DIS environment helped the rest of the graphics team

advance. I especially appreciate the round-earth capabilities engineered by

Captain Erichsen.

1.7.5 Red Flag

Major Mike Gardner (16) developed a close cousin to the SBB for RedFlag

exercises called the Remote Debriefing Tool (RDT). The similar missions

promc ,'d a healthy competition and comparison, and a familiarity for many

problems encountered that helped occasionally to correct an errant course.

"Been there, done that, didn't work" was most apparent between me and

Mike than between any other.

1.7.6 Satellite Modeler

The Satellite Modeler also shares some of the mission of the SBB, though

on a grand scale. Captain Andrea Kunz (17) developed an impressive

situational awareness tool for space and satellites that must be seen on a very

large screen to be fully appreciated.

1.8 Schedule

The following schedule lists the phases and tasks included in this research

project:

Phase Schedule

e Task Start Finish

Virtual Reality Background 1 Apr 93 1 Jun 93
* Virtual Reality User Interface Issues 1 Apr 93 15 May 93

* Current SBB Capabilities 15 May 93 23 May 93

* Basic ObjectSim Application 20 May 93 1 Jun 93

Tomorrow's Reality Gallery 1 Jun 93 8 Aug 93
(SIGGRAPH '93)
* TRG Development 1 Jun 93 18 Jul 93

* Final System Checkout & Preparation 19 Jul93 28 Jul 93

* SIGGRAPH '93 - Anaheim, California 30 Jul 93 8 Aug 93

Enhancements to Synthetic BattleBridge 1 Jul 93 1 Oct 93

* Navigation 1 Jul 93 30 Aug 93

* Information 15 Aug 93 30 Sep 93

* Interface 15 Sep 93 1 Oct 93

Thesis Preparation & Defense 1 Oct 93 29 Nov 93

* Thesis Preparation - Draft 1 Oct 93 18 Nov 93
* Defense Presentation Preparation 16 Nov 93 22 Nov 93

* Thesis Defense 23 Nov 93

* Thesis Preparation - Rework 23 Nov 93 29 Nov 93

9

2. Background

2.1 Introduction

The promise of simulated environments to provide a relatively cheap and

effective means of practicing the art of war require improvements due to

limitations in the presentation to the user. The user interface to a simulated

environment must become closer to the real world interface systems our eyes,

ears, even nose provide to make us believe in the reality of our simulated

environment. Most simulations attempt to fool these on-board human

systems with an alternate-virtual-reality using visual and aural cues to

evoke feelings of "telepresence," the current gauge of a true "virtual reality"

system that attempts to quantify the perception of '"being there" (1:75).

This review focuses on building and interfacing computer-generated

worlds so that virtual reality may achieve its full potential and allow users to

"be there." Uses abound for a system that provides the opportunity to launch

a thousand air sorties against Iraq without losing a single real pilot, sending

ten divisions to assault Omaha Beach without the huge cost in life and

materiel, or visualizing data in new and context-sensitive ways to develop

other non-physical senses. The repeatability and analysis value alone makes

developing such systems highly attractive.

I begin by presenting a few visions for the future of this potentially

revolutionary technology before coming back to reality (not the virtual kind)

with a discussion of the current status, and then conclude by further

restricting my focus to the key challenges.

10

2.2 Future

Several authors suggest that the today's "virtual reality" technology

represents the tip of the iceberg in the art of human-computer cooperation

and interaction. The current advances in interface technology, from the

Apple Macintosh point-and-click what-you-see-is-what-you-get interface to

the fully decked out "virtual reality suit" (Figure 2-1) using a positioning

glove or other sensor-based input device all have one thing in common: an

interface that allows for directly selecting, creating, and manipulating objects

in the environment.

2.2.1 A Vision for the Future

In the future, virtual reality may become a grandiose and limitless new

space or "cyberspace"-as Benedikt predicts-where interactions with incredibly

large amounts of information (assisted by virtual vehicles designed to help

the user find and process the desired information) is commonplace and

available to everyone (5:199-201).

Anything, anywhere, anytime is the motto for virtual reality, and

Benedikt is no exception. As many technological prognosticators have done

in the past, Benedikt sees a future of limitless potential based on merely

imagining the possibilities given today's early steps.

He asserts that what is needed is a "cyberspace program" akin to the space

programs of the past that develops the ideas of today into the virtual realities

of tomorrow (5:189). Benedikt's take on virtual reality, based in part on his

architectural background (5:433), has a certain appealing quality of order. His

insistence on rules and principles for developers appears stifling at first but is

presented well and, as always with projected opinions, up to developers to

accept or modify to suit their needs (5:132).

11

t, kMd•oun• , PoeBJiM MAbW

*glum

-2

Tree&"efo

• e*amoema~u abe -• .

Figure 2-1 Fully Immersive Virtual Reality Suit (3)

2.2.2 No Interface to Design

Benedikt's vision of the future, regardless of validity, or more

appropriately, viability, stretches the art of human-computer interface design.

Others insist the challenge is to make the interface invisible or seemingly

non-existent (6:364). Bricken contends that the term interface infers a

boundary, and that elimination-not creation-of boundaries characterizes the

user interface of tomorrow (6:365).

12

Bricken further contends that the main focus of a user is on what they can

do within the simulated environment (6:371-373). Neat visuals interest users

for only a very short time; soon they become bored and want to move on to

the next adventure or experience. Bricken reports that users figure out these

virtual worlds quickly and easily if they appear similar to the real world

(6:377).

2.3 Status

2.3.1 A Tutorial

Generation of virtual worlds rivaling the quality of the human visual

system requires a massive amount of computational power; some estimate it

at eighty times the current processing power of our best graphics engine (3:61).

Biocca, in his tutorial on the current state of virtual reality technology, like

Benedikt, believes in the limitless future of virtual reality. As quoted in

Biocca, "...Warren Robinette, a key designer at NASA ... (believes) ' The

electronic expansion of human perception has, as its manifest destiny, to

cover the entire human sensorium' " (3:23-24). I don't know about manifest

destiny, but I think he's trying to say that for virtual reality to succeed, users

must believe that they are really within the simulated environment and that

the environment must wvoid placing artificial bounds on the user.

The future holds great promise of boundless new worlds we can create

ourselves and modify at will. The ability to view and interact with objects

from any perspective requires representation in a form that the computer

understands. Objects within the simulated environment are manufactured

using basic computer design techniques and "...marketing of virtual models

13

has already begun," though real-time generation of new objects may

eventually replace these static models (3:60-61).

The problem is not just size and location, but how to determine and enter

object information, such as color, texture, feel, hardness, etc., into the

computer so that the object behaves as it should (3:60). All this information

presents further problems like how to store and retrieve the information,

how to present groups of objects, how to visualize non-physical information,

and how to navigate in the virtual world.

Extensive research into database management and design, particularly

object-oriented design may answer some of these very challenging questions.

At the very least, research into modeling and the extension of computer-

based modeling of objects will only help reduce the current problems.

2.3.2 Object Data Manipulation

Jacob has defined a method for standard manipulation of objects, once

created (7). The main idea of his specification language for direct

manipulation of objects concerns the ability to allow functions on the objects

based on the selected object instead of "carrying on a dialog about" the object

(7:283). Previous interfaces mostly allow the user to select the function first

and then the object on which to operate.

Dynamic objects require constant update of position and heading. Direct

manipulation due to the uncertainty of position of these objects presents an

on-going problem.

2.3.3 Terrain Data Manipulation

Terrain data manipulation presents a different problem. The enormous

size of a useful terrain database makes it nearly impossible to load into

14

computer memory all at once and even more difficult to determine which

parts of the terrain to present. Searching the terrain database causes large

delays in presenting the rendered image to the user by decreasing the frame

rate significantly (8:66), leading to lower quality simulations (8:65).

Researchers from the Naval Postgraduate School (NPS) present methods

for "culling" out unneeded information, using a hierarchical "tree" structure

for the terrain data (8). The top level of the tree holds the lowest resolution,

smallest size data, while lower levels hold increasingly higher resolution,

larger size data. Location and distance from the viewer determine the level to

use.

Combined with a moving grid of active terrain (called a bounding box),

the NPS tree structure allows for effective management of most terrain data

while decreasing the processing time spent weeding out unneeded

information. Their studies have shown significant performance

improvements over previous methods (8:68-69).

Though not really an emphasis of this research, terrain data manipulation

must become more flexible and less of a performance handicap. Hopefully,

advances in this area will relieve some of the draw bottleneck and reduced

level of visual fidelity that occurs in most simulations.

2.4 Conclusion

I've attempted to bring the wide spectrum of virtual reality technology

from the lofty visions of the future to the problems of representing largely

static terrain information within the confines of the virtual new world. I've

identified further areas of research along the way that define the paths for

advancing the current state of the art to the next level where man and

machine blend into one to work smarter, play harder, and train better.

15

To achieve the next level, a level I firmly believe will revolutionize the

way we use computers to train and work in the future, the technical

community must meet a wide variety of challenges. Lets get to work. Hand

me that spaceball...

16

3. Design

The overall design philosophy for the SBB: provide powerful navigation

and information presentation capabilities while maintaining an almost

completely unobtrusive interface. A major objective during development of

the SBB was to further the application of menu driven and object-oriented

interface design to virtual reality systems that (someday) hope to detach from

the standard keyboard input to voice command processing.

The previous iteration of the SBB (9) had a crude voice command

interface that fell short of useful. Instead of integrating this system, I chose

instead to develop an interface as suited to voice command input as mouse

input. In a sense, the mouse substitutes for an effective voice command

system, with the knowledge that a future iteration can incorporate useful

voice processing (when effective voice translation and interpretation software

becomes available) with little effort.

Before describing the design of the application and the objects that provide

the design capabilities, I next describe the interface elements and the

functionality present in the SBB. I then describe the overall simulation

system design integrated with the interface, followed by the design of the

individual objects enabling the simulation environment and the user

interface.

3.1 SBB User Interface Design and Functionality

The Synthetic BattleBridge, compared to all other AFIT simulation

applications, has a unique user interface due to the required transparency of

the interface elements, and the dynamics of their operation; transparency

allows the view, while in some ways restricted, to never be fully obscured. I

designed these interface elements from scratch using graphics calls and a

17

Button class to be described later, building a "library" of common interface

elements along the way.

The main objectives of my user interface design effort was to build an

interface adaptable in the future to voice commands as that technology

develops and to minimize the screen real estate used for the actual interface.

I succeeded in both of these objectives using the transparent dynamic buttons

described in the sections to follow. These buttons translate well to the chosen

monochrome viewing device (the FakeSpace BOOM2M), and can easily adapt

to the task of processing voice commands.

3.1.1 Description

The user interface consists of buttons and menus providing access to the

variety of SBB functional elements, as shown in Figure 3-1.

Figure 3-1 The SBB User Interface

18

At the bottom are the navigation controls; the lower left side holds the

View and Player attachment controls; along the top are the preferences, grid,

and mode controls. The grid, when enabled, has two modes: large and small.

The small grid occupies the upper right comer of the screei,, while the large

grid occupies most of the central screen area; only one mode is active at a

time.

Above the pitch control button, the Heading Gauge demonstrates another

feature of the interface: certain elements have minimal representations that

the user presses to activate the full-size button or area. Pressing the "Show

Heading Gauge" button (shown in Figure 3-1) activates the full Heading

Gauge (clasp in Figures 3-2 and 3-3) showing the current orientation of the

view.

Figure 3-2 Active Translation Button

19

The Translation and Heading buttons show another unique aspect of the

SBB user interface, what I call dynamic display. In Figure 3-2, notice that

when the mouse is over the Translation button, the underlying structure and

functionality shows through while the Heading button remains at a minimal

configuration; when over the Heading button (Figure 3-3), the Translation

button goes to the minimal configuration while the Heading button becomes

more complex.

Figure 3.-3 Active Heading Button

Notice the simplicity of the Translation and Heading buttons when not

over them with the mouse. I designed the buttons this way so that they

retreat to the background when the user focus is elsewhere.

Also, notice in both figures the message at the bottom of the control that

tells the user the function of the button; this is my form of on-line, context

sensitive help that also retreats to the background when not active. Different

20

button types have different messaging capabilities, for instance the Push

Button type has the ability to display two different messages depending on the

state of the button (pushed/not pushed).

All of the button types give direct feedback when pushed. Most indicate

being pressed by filling the button with a designated color, while others turn

on a "light" that indicates state.

3.1.2 Information Grid Design

The objectives for the information grid (Figure 3-4) included the ability to

see the surrounding vehicles and force distributions within a user-specified

distance of the current viewpoint location, and the ability to attach to players

and views directly from the grid. My design incorporates these objectives.

The grid represents the immediate area surrounding the Stealth object,

sort of like a radar, with the boundaries of the nearest grid sector and the

orientation (NESW) clearly visible. In Plan Mode, the current viewable area

is shown by the small rectangle at the center of the grid window. Objects on

the grid/radar, in the colors and shapes denoting force and type (discussed

later), can be seen within a 3700 square kilometer area (-6 sectors x (25km x

25km sectors)) centered at the current viewpoint coordinates.

Notice in Figure 3-4 that the ground objects on the grid appear in the same

relative location with respect to the viewable area as the actual objects in the

scene relative to the screen boundaries.

21

Figure 3-4 The Information Grid

3.1.3 FakeSpace BOOM Interface

The buttons and grid described above function well in a monochrome

display device such as the FakeSpace BOOM (Figure 3-5), another reason I

chose to design my own set of interface elements. The available tools such as

the Forms library (19), provide lots of interface capability but at a performance

cost that proved too expensive for the SBB. Plus, the Forms did not appear

well on the BOOM, because of the colors and fonts, and small screen space

available. Basically, the forms become unreadable.

My buttons have a gray scale equivalent that displays the fonts in white,

and the lights as filled/unfilled white circles. With the transparency

eliminating the screen space problem, the only real problem becomes how to

select them. I consider the answer to this problem as future work that

involves a "flying mouse" or voice commands, both of which the current

22

interface could handle without modification (well, maybe a little, but not

much).

i • II • , I-
I I I S,..I

Figure 3-5 FakeSpace BOOM

The SBB operates in either gray-scale or 3D on the BOOM, with 3D having

about half the frame-rate as the gray-scale due to the second viewpoint

processing. The 3D viewing is best within a few meters of the focus object.

3.1.4 Head Mounted Display Interface

A second non-terminal display, the Polhemus LookingGlass Head-

Mounted Display (Figure 3-6) permits color and gray-scale viewing.

Currently, the HMD has been untested in the SBB, though the potential for its

use exists within the ObjectSim framework.

23

Figure 3-6 Polhemus LookingGlass Head-Mounted Display

3.2 Synthetic BattleBridge Simulation Design

In the following sections, I discuss the basis and framework for the

Synthetic BattleBridge (SBB) application, a giant step forward in AFIT

simulation work called ObjectSim, developed by Captain Mark Snyder (12).

Then I discuss the SBB Object Manager developed by Steve Sheasby (10), the

network interface solution that manages the Distributed Interactive

Simulation (DIS) protocol data units (PDUs) as they pertain to specific SBB

needs. Finally, I put it all together by describing the SBB-specific objects that

are derived from ObjectSim, interface to the Object Manager, and provide

user interface and information presentation capabilities unique to the SBB.

I designed the SBB to provide a view into the DIS simulation

environment using the ObjectSim framework and the Object Manager net

player management software. I developed the SBB with the focus of views

24

and tools to navigate and interrogate the environment to enhance the user's

situational awareness. The SBB maintains this focus by abstracting the

environment into less complicated visual information or enhancing the

environment with other information on the disposition and composition of

forces, the location of forces, on-going conflict, and patterns of conflict.

The shell of the SBB comprises a User Interface Management System

(UIMS) with the tools and information displays integrated into the overall

SBB architecture. I have also provided for other tools to be added to the SBB

on an as needed basis; currently, the FLS is the only information tool

integrated into the SBB, but others can easily follow using an approach

described in (11).

Various objects are integrated into this shell to provide navigation and

information presentation capabilities, 3D rendering, trails, locators, various

modes, and a wide variety of views and view options. Before I get to these

objects, I will explore ObjectSim as it pertains to the SBB.

Note that SBB objects are capitalized for recognition purposes.

3.2.1 ObjectSim

As shown in Figure 3-6, the object-oriented design of ObjectSim (12) allows

subsequent designers to inherit and modify nearly all aspects of the

simulation to suit their needs. I have used this framework to provide Stealth

players (with no model to represent them), Locator players (with an abstract

locator model representative of the type of vehicle) and Shadow players (to

offset the view slightly for a 3D view). Each of these players derives some

attributes and methods from an ObjectSim player in order to integrate into

the ObjectSim framework.

25

Sknuetbio Cuam
*S&peorcflm for qvIcaxou

-ExeaLve simiddton control

PlrnPuModelrwilaw
- uExec tiv controlmus view fo Pay
-CmNongoetw ry 01 VWavor Mm alc uielss e

- StuN~cnmomvlaw Playe gsmeneMe

Parrawn?- Obs0'mI0 ~lDaa

-~igr Sun, Thee ofeci Object Modfferlas

-... S iman Wulaind eni o .
Th SimulatIion wobjec isc th mai obetoIayOjcsmlase

appicaio. Siemueto oladon conain theker intaizto paramersthvaiu

For xampether terainyiwplyrmnerr and"W othler objcsrqie

topruncareoallSinitiazenb cothen simulaition. to armtrth aiu

26

3.2.1.2 View

During execution, the Simulation allows the user to control the View and

the Player attached to the View. The View controls the relative location of

the objects in the scene for the channel to which it is assigned by accessing the

view player (a special type of player that builds on either a "real" object in the

scene, or a Stealth object) attached to the View. The View object contains all

the methods and data necessary to render the scene defined by the current

attached Player.

3.1.3 Attachable Player

Players derived from the Attachable Player class have widely varying

behavior depending on type, each usable within ObjectSim provided they

meet certain minimum requirements for design. Due to the object oriented

structure, any Attachable Player derivative can attach to a View allowing

context/mode sensitive controls and great flexibility. I use this flexibility to

provide navigation and information displays that change based on user

inputs, the type of view, and the current situation.

Each player may or may not have a model that represents them in the

display depending on the player type; net players are "mapped" to the

nearest appropriate-or available-model using a Model Manager (described

below), while Stealth players get no model at all. The network contains data

for only the "live" players, that is the players currently active and present in

the simulation environment. Stealth players are considered local, non-

network players that affect only the SBB operation, and are handled

differently.

27

3.2.1.4 Terrain

Each Simulation can have one or more Terrain player (really, player may

not be the best description, but it will have to do) that provides context for the

movement of net players within the scene. Terrain remains relatively

constant in location and may have associated other features, such as

buildings, trees, hedges, bridges, rivers, etc. Various methods for terrain

resolution management exist (as discussed in Chapter 2), though the

abstraction within ObjectSim hides the actual implementation from the

application designer.

The Terrain database also determines whether the SBB uses a round-earth

conversion algorithm or the straight flat-earth coordinates for net players.

The wide variety of uses for the SBB, and the objective for as general a design

as possible, made design decisions al., ay s lean toward flexibility and

generality.

3.2.1.5 Renderer

Like the Terrain, the details for the Renderer are also hidden from the

designer; except for allocating, initializing, and then starting the renderer, the

application knows nothing more about it. To understand the renderer

operation, one must understand the Performer tree structure. This structure

allows the Renderer to bring all the pieces together and then render the

resulting image. Each reachable branch of the tree is rendered each frame

unless specifically told not to.

Following initialization, the Renderer repeatedly loops throughout the

structure built by the Simulation to cull then draw the scene represented by

the current Performer tree. The user actually interacts with the scene by

manipulating elements of the tree and then repeatedly drawing the "new"

28

reality of the tree. ObjectSim handles this tree manipulation implicitly as

"toolbox" commands within the ObjectSim framework, while only

exceptional cases require direct access to the tree or knowledge of the

Performer tree (such as for 3D rendering override, discussed below).

ObjectSim, a structured Performer toolbox expressly for simulations,

handles most of the interface to Performer and control of the graphics

pipeline(s). The structure of Performer necessitates thinking in three streams

at all times: 1) Application, 2) Cull, and 3) Draw. Unless handled correctly,

processes on one stream cannot "see" processes on another. Each of the three

streams operate independently within a frame, but each must wait for the

others to complete before starting a new frame, a process of synchronization

that requires balance for efficient operation and high frame-rate. The

operation of the Object Manager, my next topic, greatly affects the frame-rate.

3.2.2 Object Manager

The Object Manager (10) provides the net management facilities for client

applications (such as reading and interpreting DIS packets from the network).

The SBB Net Manager (providing specific utilities, as described in the next

section) controls the SBB version of the Object Manager.

Since the SBB only receives and does not broadcast, the only task of the

SBB Object Manager becomes one of monitoring the network for updates to

net player' and providing access to the list of these players, a focused approach

allowing for economies and optimizations within the update utilities

(though there is plenty of room for improvement). Figure 3-10 contains a

diagram of the SBB Object Manager/SBB Net Manager high level design and

relationship.

29

A description of the information maintained for the net players using the

SBB Object Manager follows (a combination of the information in the base

net player and in the SBB net player):

Entity ID A unique identifier used to distinguish between net
players of the same type.

Entity Designation Basically, the type of player; this information is used
to map the entity to a model (e.g., F-15). Based on
the DIS protocol.

Entity Domain Air, Land, Surface, Subsurface, Space, etc.

Entity Category Specifics for each of the domains.

Entity Model The particular model for an entity, such as MIA1 or
MIA2.

Forces Type Friendly, opposing, neutral, and unknown.

Country One of the DIS supported countries.

Position XYZ coordinates for the player.

Orientation Heading, pitch, and roll for the player.

Velocity The velocity vector: <vx, vy, vz>.

Updating (player processing) consists mainly of updating player position

and orientation-including round-earth conversions-and managing the

player list to remove destroyed or inactive players.

3.3 SBB Top Level Design

I designed the SBB to build on ObjectSim and the Object Manager; I

derived and modified the behavior of most of the objects available to make

the SBB-specific objects (shown in Figure 3-8 and described below). These

objects, tied together by the SBB Application object, include all the capabilities

necessary for a DIS simulation stealth observer system.

30

I TJ6

LLS

za

131

3.3.1 SBB Simulation Objects

The SBB specific objects include many derived from ObjectSim. The

following table lists the SBB objects that provide the simulation capabilities

and their relationship to ObjectSim objects. Figure 3-8 shows the steady state

(following initialization) relationship of these objects.

Objec Parent Description

*SBB Application Simulation The structure and timing object.
Contains the entire SBB structure
and initialization parameters.

*SBB View View SBB-specific view object, tailored
for drawing buttons, trails, and
other SBB interface elements.

eStealth Attachable Player The workhorse of the SBB, the
Stealth ,'bject contains the viewing
and navigation capabilities of the
SBB and most of the information
processing utilities as well.

eShadow Attachable Player Used to present 3D images by
offsetting the stealth view.
Provides means to tune the view to
achieve better performance.

*SBB Net Manager <none> Described above, manages the
network.

*SBB Net Player Base Net Player Contains the information the
Object Manager compiles for each
PDU from the network.

*Model Manager <none> Maps the player entities to the
representative model.

*Clock <none> Keeps the simulation time.
Contains functions for displaying
and storing the time.

32

The following sections provide the details for each of these objects. An

explanation of the other objects and utilities necessary for the interface and

information follows the simulation objects description.

3.3.1.1 SBB Application

The major simulation object, the SBB Application contains the

instantiations for the other objects within the simulation. The SBB

Application also controls the Renderer operation and includes interfaces into

the various rendering methods, such as for Cull or Draw. Following

initialization, these interfaces provide for communication with the other

objects; the SBB Application controls all aspects of the simulation and the

management of the simulation and interface objects.

3.3.1.2 SBB View

The main simulation object, the SBB View class controls setting up and

managing the draw operations for the View and the attached player for

normal screen rendering and for the more complicated 3D rendering (in gray-

scale only). The screen rendering mode is determined by the type of mask

assigned to the instantiated view, as follows:

Mask Mode D ipn

*All Normal Does not alter the normal behavior
of the view.

,Red/Blue 3D Alters the behavior to enable only
the bitplanes corresponding to the
color of the mask.

In normal screen rendering mode, the SBB View performs the attached

player's draw function and then draws the trails for the net players. In 3D

33

rendering mode, the SBB View does the operations from the normal mode

with the additional task of overriding the renderer to perform specialized

drawing into the individual color bitplanes.

Since the Silicon Graphics workstation produces a three-channel display

output (corresponding to the red/green/blue bitplanes), instantiating two

separate SBB Views, one for the red bitplanes and one for the blue, and

offsetting the views using the procedure described below in the Shadow

object, the resulting display contains a red/blue color separated image suitable

for piping to a monochrome display device.

For this I use the FakeSpace BOOM2M, which allows separate control of

the image sent to each eye viewer, each a monochrome equivalent of the

intensities and hues present in the respective channel. By piping the red

channel to the left eye and the slightly offset blue channel to the right eye

(and discarding the green channel), the resulting monochrome image

provides the visual cues present in a 3D image. These cues mostly include

seeing a separate but consistent image with each eye.

3.3.1.3 Shadow

A view player, the Shadow object complements the Stealth object

(discussed next) by providing the offset viewpoint for 3D rendering (as shown

in Figure 3-9). The Shadow object simply adds a second view player that is

offset from the Stealth view player by the eye separation distance (esd) and

rotated to look at the same focal point as the Stealth.

The Shadow and Stealth objects each require a View, since they are both

rendering a scene, though from slightly different vantage points. The

separate views for Shadow and Stealth handle the view for the red and blue

bitplanes.

34

focal
point

rotation
offset

Q alth -0...' Shadow

esd

Figure 3-9 The Shadow Object Offset

The Shadow object provides built-in capabilities for modifying the eye

separation distance (esd) and rotation offset that only become active upon

instantiation, another demonstration of the overall design philosophy of

context-sensitive controls and capabilities. This works for close up situations,

but the problem with this set-up is that the manual modification of the

rotation offset precludes the observer from focusing like the eye would. Until

we know what the user is looking at (by scanning the eye maybe) to

automatically alter the focus, the effects of 3D will be limited.

3.3.1.4 Stealth

The SBB contains a group of Stealth objects that provide the various types

of views and the controls for navigating within the simulation environment.

The scene rendered and the capabilities available to the user are determined

by the particular Stealth attached to the View.

The design of the Stealth object is basically as an invisible vehicle

(without a representative model) that transports the user within the

35

environment without affecting or being seen by the players within the

environment (hence the term stealth). The Stealth object provides the

principal interface capabilities to the user; it contains the methods and

functions other objects (like the button/menu interface) call to affect the

viewpoint or information presented to the user. I discuss the types of views

before I discuss the controls.

3.3.1.4.1 Stealth View Types

Each view contains state variables that preserve the location and status of

the view as of last attachment or initialization. The user controls which view

they are attached to by selecting a Stealth object to attach to the SBB View.

This allows for special purpose views, as many pre-defined views as desired

(within reason), and state preservation.

The special purpose views include Fuzzy Logic Sentinel areas (11), and

interrupt areas with special events programmable by the user, such as missile

launches or timed viewing of areas where the user can set an alarm time that

allows the SBB to take the user to a particular location, keyed to some

timetable.

Unlike the special purpose areas, pre-defined areas are based on a setup file

associated with a particular terrain, allowing preparation prior to simulation

that eliminates setup time during the simulation. These pre-defined areas

remain throughout the simulation, even if the user has moved the actual

viewpoint to another location.

Again, regardless of which view is currently active, the user's previously

visited views, the pre-defined views, and the interrupt and special purpose

views hold their state. This preservation of state means that the user need

36

only define the views desired and then selectively cycle through them or

define new ones.

3.3.1.4.2 Stealth View Controls

The navigation controls contained within the Stealth object allow the user

to modify the viewpoint location and orientation. Basically event-driven, the

Stealth controls allow the user to move along the three independent axes,

orient heading and pitch (not roll), increase/decrease the rates of movement,

attach to net players, and invoke pre-defined local viewpoints within a view

(such as viewing from above or behind).

The event processor design of the Stealth means that processing occurs

only when the user modifies the viewpoint, and then only to change the

minimum variables required. When the user is simply observing and not

changing the viewpoint, minimal processing occurs, as efficient a design as I

could think of. The event processor operates by waterfalling through the state

variables for the stealth object attached to the SBB view.

3.3.1.5 SBB Net Manager

As stated above, the SBB only receives information (due to the stealth

nature of the application), so the SBB Net Manager includes the ability to get

and update a list of the currently active net players. The SBB Net Manager,

responsible for allocating and initializing the group of net players and their

corresponding trails and locators, also controls the mapping of net players to

the representation models and the abstract locator models, based on the entity

type, designation, and forces type (friend or foe) using the net player Model

Manager. During operation, the SBB Net Manager enables the trails and

locators.

37

The SBB Net Manager also controls the instantiation and management of

the SBB Object Manager. Figure 3-10 shows the relationship between the SBB

Object Manager and the SBB Net Manager. Notice that the two objects share

the list of net players. This allows for much faster processing and little wasted

effort copying information.

3.3.1.6 SBB Net Player

The SBB Net Player trims the enormous volume of information available

within the DIS standard to the minimum required for the SBB, and the place

to modify to increase the information received from the net in the case of a

complementary application (such as the FLS). The sole purpose of the SBB

Net Player is to define the information requirements for the SBB.

Net Model
Manager

Network Initialize

Model Index

SEntit Index

SPDU - I

SBB Net Manager
SBB Object Martager

U-at Player Initialize

;221List
Get-NetJ

-- _ A ---- ---JD_ aw]

Figure 3-10 The Object Manager/SBB Net Manager Design

38

3.3.1.7 Locator

With the large amount of data coming into the SBB, and the wide variety

of possible vehicle and entity types, I attempted to simplify and enhance the

scene using the Locator player. Instead of seeing F-15s and F-4s, MiG-29s and

Su-27s, Mls, M35s, and HUMMWVs, the skies would fill with locators that

look like pills(some say footballs, see Figure 3-11), and the ground would

cover with pyramid shaped locators (Figure 3-12) denoting the location and

orientation of the vehicle, both of which are visible for (virtual) miles.

Notice in Figure 3-11 the other air vehicle about 10 kilometers in front of

the closer air vehicle; without a locator, the vehicle would be invisible. To

simply enlarge the vehicles would present an incorrect image with the

vehicle appearing only a few hundred meters away.

Figure 3-11 Air Vehicle Locator

39

In essence, the locator view is an abstraction of the battle space into types,

simplifying the view while providing more information because the locators

indicate friend or foe (by color), orientation (light on top, darker on bottom),

and direction of motion (the colored ring at the front of the air locator, and

the others simply point in the direction of motion).

The locators preserve the context of the image while simplifying; the user

knows that another vehicle is out there, and the user also knows the

orientation and forces type. The user gets this information from the ring on

the front of the locator (or on the back polygon) or from the trail left by the

vehicle, my next topic.

Figure 3-12 Ground Vehicle Locator

3.3.L8 Trail

A close cousin to the Locator, the Trail indicates friend/foe and location

history of the vehicle over some preset time period. Provisions exist for

40

setting each segment of the trail to a color based on the vehicle energy or

velocity over the interval, while the algorithm for determining which color

to use remains as future work.

3.3.1.9 Model Manager

Mapping of the SBB Net Players and any other players to actual

representative models has been a problem for a long time. I solved the

majority of problems by developing the Model Manager class, a data file

interpreter designed to map the entity designations contained within the

Object Manager/DIS standard to available models.

For instance, the user may decide to map all MiG-29s to the F/A-18 model,

since no MiG-29 model is available. This mapping affects only the rendering

of the entity within the scene and none of the data, the user will see an

F/A-18, but the actual data and performance (given a correct driving

application) will reflect a MiG-29.

I designed the Model Manager to allow methods for querying the

mappings of entities to the representative model type. Other uses for the

Model Manager include mapping of the terrain, animation effects

(explosions, etc.), and locator models. I also use the comment field within the

Model Manager to hold other information on the models such as the scale

factors for the various locators.

3.3.1.10 Clock

The last simulation object, the clock, provides capabilities for setting and

retrieving the system time based on either the simulation start time or the

real time, based on user input. The clock produces a time format of

"HH:MM:SS" usable by any object in the simulation.

41

3.4 Interface and Other Object Design

Along with the objects for simulation described above, the SBB also

contains objects and utilities for information presentation and user interface,

as described in the next table:

SPare ntD

*Player Button <none> One for each player when the Grid
is open in Large mode. Allows
attachment to players.

*SBB Button Button User interface buttons. Transparent
and modifiable on-screen, SBB
Buttons allow great flexibility in user
interface design.

•Drawstring <utility> Utilities that assist information
presentation, user interface, and
screen drawing objects.

Sounds <utility> Provides a sounds interface to play
sounds based on the situation.

These objects provide the connection between the simulation

envdzonment and the user. The following sections describe the design of

these objects.

3.4.1 Player Button

On screen only in the Large Grid display mode, Player Buttons allow direct

attachment to Players and Views. Each button presents player information to

the user, including domain, forces type, and ID number using icons, colors,

and numbers, along with the present heading. The button becomes visible

only when the user places the mouse directly over the player symbol.

The player/view symbol:

Aircraft Ground Munitions

IFI I4I

42

The player/view color:

Friendly Opposing Neutral Unknown

I Blue I Red I Yellow I W I
3.4.2 SBB Button

The SBB Buttons are the main user interface. They allow the user to

manipulate the environment variables as well as the interface elements.

There are many different varieties of SBB Buttons, as listed in the following

table and described in the sections below.

e Parent

Button <none> The base class. Contains the data
and methods for the description of a
basic interface button.

Rect Button Button A rectangular derivation of the base
class. Intersection simplicity allows
for very fast operation.

Push Button Rect Button A specific type of button that
operates only once per change
from pushed to not pushed.

Light Button Push Button Same as a push Button except
includes built-in light for indicating
pushed/not pushed status.

Hideable Button Rect Button Operation of this button includes
built-in support for hiding and
enabling other buttons when
pushed.

Display Button Light Button A modifiable button used to display
text or values. Includes memory.

Menu Button Push Button Selection of this button enables a
list/menu of other buttons.

43

The Button base class includes data and methods supporting titles,

messages (for on-line help or context), and enabling/disabling selection. All

of the buttons operate on the same basic structure:

"• get the mouse coordinates and whether pressed

"* check for intersection with a button

"* if over a button and mouse pressed,

then perform the button function

"• draw the button

This structure allows for nesting of buttons into hierarchies so that only

the desired buttons (active on-screen) are interrogated and processed. For

instance, subordinate buttons are not processed if the parent button is

disabled, trimming processing time to a minimum.

When pressed, Buttons have two potential operation types: continuous or

leading edge. For the continuous button type, the button's function

continuously fires, providing extremely quick response times and fast

accumulation of desired input. For the second type, leading edge, the button

function occurs when first pressed; the button must be released before

another push button can fire.

Along with how the button fires, the designer has complete control over

button drawing, a powerful mechanism for customizing the interface. The

best example of this power allows the designer to structure a button such that

the underlying function, or multiple functions, enabled by the button become

visible only when the mouse is over the encompassing button. In this way,

complicated buttons become complicated only when intending to use them,

simplifying the interface at all other times.

44

All button types inherit from the base class, though some of the derived

classes that follow further expand on the base class capabilities. Figure 3-1

shows examples of most button type.

3.4.2.1 Rect Button

The Rect Button provides the intersection routines for a rectangular

button. The fastest button type, Rect Buttons are general purpose buttons

with no added capabilities from the base class, except the intersection routine.

3.4.2.2 Push Button

A Push Button operates based on the state of the pushed/not pushed

value. Also, provides methods for an off message along with the base class

message, depending on the state of the button. Uses for Push Buttons include

selecting from a list, or as pre-defined action buttons that logically occur only

one time per push.

3.4.2.3 Light Button

Light Buttons, derived from the Push Button, present the value of the

pushed state as a built-in light on the button. The type of light remains for

the designer to specify.

3.4.2.4 Hideable Button

Hideable Buttons are completely inaccessible unless enabled. All

subordinate buttons become inaccessible as well, so Hideable Buttons either

work in pairs or in groups that enable and disable each other. A good use for

the Hideable Button: present a minimal button representing another larger

button in its hidden form; pressing the minimal button enables the larger

button before disabling itself. Then, when the user hides the larger button,

45

they are really enabling the minimal button and disabling the larger button,

an efficient and simple process.

3.4.2.5 Display Button

Display Buttons are input receptacles in the form of a button. By clicking

on them, they become enabled and ready for input from any appropriate

source. For instance, clicking on a Display Button for a particular value

allows the user to modify that value directly, with the old value stored in the

built-in memory (for undo purposes). Display Buttons derive from Light

Buttons because a little indicator light comes on when enabled for input. The

display value can assume any type from numbers to text.

3.4.2.6 Menu Button

The last derived type of button, the Menu Button, is a special Push Button

and Hideable Button mix that allows the designer to build button hierarchies

into a menuing structure. The user activates the subordinate group of

buttons only by pressing the main Menu Button; pressing again deactivates

them. Any type of button may be included in the subordinate grouping,

including another Menu Button, a built-in hierarchy generation facility.

3.4.3 Drawstring

The Button classes and other interface elements perform much of the

formatting and printing of text and drawing of geometric and iconic figures to

the screen using the Drawstring package of utilities. The package contains

methods for drawing various gauges, information groups, and for formatting

strings, as well as font management interfaces for setting or changing the

current font.

46

I designed this package to handle all drawing of text and non-Performer

graphics images to the screen, using calls within the client objects. Most of

the methods for text/graphics management contained within Drawstring are

not specific to the SBB, enabling usage by other ObjectSim applications.

Unlike with stroke-vector window-dependent salable, the Drawstring fonts

(using the Font Manager library) must be explicitly scaled and are not

automatically scaled in relation to the window size.

3.4.4 Mac Sounds

The last object class, a simple and straightforward sound interface designed

by Captains Wright and Soltz (13), provides programmable sounds generation

keyed to the user interface, events within the simulation environment, or

any other situation the designer desires. To use this class, a simple class

instantiation is all that's required.

3.5 Conclusion

A unique and powerful user interface makes the Synthetic BattleBridge an

easy-to-use and adaptable observer system in a simulation environment. The

ObjectSim framework and the Object Manager network management utilities

allow for fast performance and wide usage within the DIS simulation arena,

without affecting anyone else or disturbing the environment. The trick

remains on how to implement and integrate the features and design

described above, the topic for the next section.

47

4. Implementation

I implemented the SBB using the C++ programming language. As the

best choice for object-oriented designs, ObjectSim, the Object Manager, and all

of the objects within the SBB were implemented using C++.

4.1 Overview

The overall implementation began with an example application created by

Captain Mark Snyder. I then took over and modified the various objects to

create the SBB, with capabilities and functions necessary for navigating in the

DIS simulation environment.

The application begins by parsing the command line options to determine

the modes, options, and operating environment for the SBB. Then, the

application instantiates the SBB objects and functional components, and the

initializes the same, before entering the repeated loop that queries the system

and culls/draws the resulting image.

Unless specifically overridden, the ObjectSim renderer handles the culling

and drawing of the Performer tree without explicit instructions from the

application. Special cases, such as the 3D rendering mode, override the

renderer to handle the drawing (not the culling).

The Performer framework for the renderer consists of three threads of

control, all synchronized on the frame boundary, but otherwise independent:

the Application thread for computation and control, the Cull thread for

removing unseen polygons from the scene to be drawn, and the Draw thread

for the actual drawing of the scene.

User input occurs for real-time response on the Draw thread, while

movement and updates to the player positions and views occurs on the

Application thread. Some applications benefit from unloading some of the

48

Application work onto the Cull thread, but the SBB does not; the Application

thread for the SBB is the least used of the three threads because of the

event-processing design of the propagate and update functions.

The whole Performer system is geared toward optimized graphics for

simulations and rendering of images. Each of the above threads of control

works best on its own processor, with the Object Manager on its own

processor as well, so the SBB requires four processors to provide optimum

performance.

4.2 Object Implementation

I begin with a description of the implementation of each of the objects

within the SBB and how the objects interact. The line between simulation,

interface, and other objects blurs in the implementation discussion, because

they are all in the same system and the interface objects drive the simulation

objects, or modify their behavior. I discuss the implementation of the

simulation objects first and only the direct SBB simulation objects, leaving

discussion of the implementation of ObjectSim and the Object Manager for

others (12 and 10, respectively). Last, I discuss the implementation of the

interface objects.

4.3 SBB Top Level Interaction

The user interface elements provide user input to the simulation objects.

The main method for this is through message passing, with the function of

the interface element to send the message to the appropriate simulation

object to modify the state variables. The general form of a message follows:

• void message(int value);

49

The message.h header file contains the list of messages, their recipients

and the various locations of the calls. This system works well for

Performer/ObjectSim because of the shared memory requirements for the

multiple threads discussed above. All calls not directly accessible through the

object-oriented structure (due again to the shared memory requirements) are

accessed in this manner.

For instance, to change the view to a particular view number (say 53), the

calling code will execute the following:

a SetViewIndex(53);

The sbb&app code contains the SetViewIndex function that increments the

attached_index to the desired view. Instead of directly just changing the

attached_index, sbb.app can execute the required set of statements or

functions required to cleanly change the view to the desired number, to save

the state variables for the current view, or other bookkeeping duties. I

followed this style of coding throughout the SBB application.

As for other types of user input (such as keyboard input, or data from the

BOOM2M), I set up a structure within each potential input receiver for

processing input as a message as wel' So when the user presses a button on-

screen or a button on the keyboard, the message is sent to the correct

simulation object and treated the same, a clean and easy to follow coding

style.

4.3.1 SBB Simulation Objects

The SBB begins operation in the SBB Application (sbb-app) by initializing

the various objects and kicking them off. Most of the simulation object

require initialization to allocate shared memory or do other initialization

tasks.

50

The operation of the simulation objects (following initialization) occurs in

a regular pattern, based on the three-thread control structure discussed above.

The renderer, once kicked off to run, knows the views (set up during the

initialization process) and calls each one in order of creation to draw once

each frame. The renderer also calls the application that initialized it (in this

case the SBB Application) once before and once after each call to the view

draws. These calls (pre-draw and postdraw), allow graphics or input

processing to occur in the application as well as the other simulation objects.

The Cull thread operates as described above, with no explicit calls within the

SBB.

On the App thread, the renderer calls the SBB Application propagate

function. The SBB Application is responsible for moving the views and

players within the scene during the propagate call. The majority of

computation occurs in the Stealth propagate call for the Stealth view attached

to the SBB View.

This is the general process for the simulation objects. The following

sections describe the details of the implementation for each of the simulation

objects.

4.3.1.1 SBB Application (sbb-app.cc)

The initialization process for the SBB Application includes the following

tasks:

"* parse the command line

"* initialize Performer

"• initialize the various Model Managers

"* initialize the terrain and the animation effects

"• initialize the head modifiers and 3D rendering view

51

• initialize the Stealth class and Shadow class

0 initialize the Renderer

* initialize the SBB Net Manager

• initialize the Views

Once completed, the SBB Application becomes the focal point for all

subsequent processing and the main link to the Renderer. During the

Renderer initialization, the SBB Application's init-sim call allocates and

initializes the various view players and terrain. Prior to the first drawing, the

Renderer calls the initdraw and initdraw_thread functions which set the

window for graphics processing and enable the various input queue entries.

Once in normal operations, on the Draw thread the pre.draw function

checks for user input; on the App thread the propagate function updates the

calls the SBB Net Manager to update the network player list and then

processes user input for modifying the view number. Once modified, the

appropriate Stealth player (corresponding to the attached view index) gets

propagated.

4.3.1.2 SBB View (color_view.cc)

As shown in the design section, the SBB View (or views, depending on

mode) gets the job of calling the draw function for the attached Stealth player

(and Shadow player, if 3D) and the SBB Net Manager for the player trails.

Using wmpack, a graphics library call, the final task of the SBB View is to

decide on the type of write mask used to load only the appropriate bitplanes:

red or blue for a red or blue mask, or all planes if an all mask.

52

4.3.1.3 Shadow (shadow.cc)

The shadow object provides the offset viewpoint for 3D rendering using

the Player attributes baseoffset (translation) and baserot (rotation). By

sharing the currently attached Stealth player position and orientation, the

Shadow includes functions for on-line tuning of the red/blue bitplane visual

separation and orientation. The baseoffset and baserot vectors (really

pfVec3s) work in local coordinates so to get a separation distance between

eyes, esd, merely add the esd to base&offset[PF._X]. Likewise, the rotations are

relative, so to cross the separated eyes merely add a heading change to the

base-rot(PFH].

4.3.1.4 Stealth (stealth.cc)

The Stealth class, the most difficult and complex implementation, bears

the majority of user input processing because the Stealth player holds the

viewpoint position and orientation for the rendered scene. Again, once

initialized, the Stealth players repeat the same set of functions, draw and

propagate, continually refining their position and orientation in line with

user input, and (if attached) the location of the player they are attached to.

Since they are on separate threads, the draw function can only talk to the

propagate function across shared memory and the user inputs are processed

using the message approach described above. These functions process user

input and draw information to the screen, and move the viewpoint within

the scene as further explained in the following sections.

4.3.1.4.1 Stealth draw

Each view contains state variables that preserve the location and status of

the view as of last attachment or initialization. The user modifies the state of

53

the Stealth player by modifying these variables. The major state variables are,

of course, the position and orientation of the viewpoint.

The draw function algorithm, chosen for speed and functionality:

"• set up the screen for drawing

"• determine if currently attached to player

"• read the mouse position and whether pressed

"* if BOOM is present, read the BOOM for position and
orientation

"• read the keyboard to see if keys pressed

"• draw the gauges

"* draw the interface buttons

The draw function uses the message approach described earlier to process

the variety of input sources. Messaging allows the BOOM to trigger the same

as the keyboard the same as an interface button on the screen, etc.

4.3.1.4.2 Stealth propagate

The propagate function processes the messages left from the draw

function, including handling the attachment and detachment from the net

players (due to the use of the base_offset and baserot vectors) and the

changing of mode from Plan Mode to Fly Mode (or vice versa).

Free of attachment, the Stealth player propagates along an arbitrary vector,

the orientation, if the user requests movement. Movement along this vector

is easy: simply add the xyz components of the vector in measured increments

input by the user to the position vector. Propagate also recalculates the

orientation vector when the orientation changes due to user input.

The propagate algorithm then becomes:

• get the current player list

54

"* determine (if currently attached to player) if the

player is still in the list, if not detach

"* if changing modes, reset offsets

"* if player change desired, process changing the
attached player and attaching

"• if detaching, process detach to reset attachment
variables

"* process position and orientation

- case attached

"> copy the attached player coordinates

"> move based on the base vectors

- case not attached

> move based on the position and orientation
vectors

"• process pre-defined view messages

"* save the presently attached Stealth variables into
shared memory (for use in the draw function, next
frame)

The fastest performance occurs when no messages occur. Usually, only

one or two of the functional elements need process and only when changing

the state of the view, so the propagate function should never cause noticeable

performance degradation.

4.3.1.5 SBB Net Manager (sbb._net_mgr.cc)

The initialization of the SBB Net Manager includes the following tasks:

"* spawn the SBB Object Manager

"* allocate and initialize the list of SBB Net Players

SBB Net Manager spawns the SBB Object Manager as its own process (and

processor, if a processor is available). Allocation and initialization of the SBB

Net Players includes insertion into the Performer tree, assignment of the

55

locator switch used to turn the locators on and off, and allocation of space for

the representative model.

During normal execution, the SBB Net Manager's single-minded purpose

is to get and update a list of the currently active net players. These functions,

get_net and update, are called together by the SBB Application during its

propagate function. get-net simply has the SBB Object Manager fill in the

array of SBB Net Players with the appropriate information for the SBB.

update processes each player in the active list for changes, as follows:

"* if inserted:

- map the player to the representative model

- assign a locator type and color

- initialize a new trail

"• if deleted:

- remove the representative model

- turn off the locator and trail

"* copy the position and orientation

"• if round earth:

- convert the position and orientation

"• if time for another trail segment:

- record the trail segment

"* if locators state changed:

- process the change (turn them on or off)

The SBB Net Manager includes a pointer to the list of players for other

objects to use. The biggest user for the player list is the Stealth objects.

56

4.3.1.6 SBB Net Player (sbb-net.player.h)

The SBB Net Players (defining the information requirements for the SBB)

are implemented as an array, giving a list of data to interface. The SBB Object

Manager fills the list with current values, the SBB Net Manager copies the list

when told to by the SBB Application (during the propagate function), and

updates any players that have new or modified information. The Pause

button suspends the update of the list; when un-paused, the players will

jump to their new locations.

4.3.1.7 Locator (sbb.net-player.h)

Locators exist to simplify the view. Captain Soltz and I tried many

varieties of air locators, including cylinders, spheres, pyramids, and cones, but

each fell short of the elongated-sphere football shape used for the air locator.

The football shape, with the circular ring at the front indicating the force type

and direction of the vehicle, proved the most appealing and what I

considered the most informative; the shape always shows the orientation and

is visible from a much further distance than the other shape designs. At

seventy-two (72) polygons, the air locator was by far the most expensive

design, but worth the minor performance cost (about a 10% frame-rate hit,

which could easily be made up by turning off the representative model

rendering when locators are on).

For ground locators, the first design proved the best: the pyramid.

Centered at the vehicle location but pointed out the front and flat on the back,

the pyramid ground locator looked so good from the start (mirroring classic

military operations maps with the arrows pointed toward the front), the only

other design tried was a small box for non-offensive ground vehicles

(orientation problems made this a poor choice).

57

The decision that all ground vehicles share the same type of locator (for

simplicity), should probably be revisited in future versions of the SBB to

determine if separate shapes for the offensive versus support vehicles

provides a better ground image. Clearly, a jeep is not as important as a T-80

Main Battle Tank.

Other types of locators exist for missiles and bombs, both just really big

transparent versions of the basic missile and bomb models. Force type

indication comes from the color.

4.3.1.8 Trail (sbbtrail.cc)

For the trails, I implemented a simple static-sized linked-list, with the only

task being to manage the head and tail pointers. The head points to the oldest

point in the trail list, and the tail points at the newest point, so drawing the

trail in the scene consists of the following steps:

"* start drawing at the head position

"• for each point i in the trail list between the head
and the tail do:

- draw from the i-i position to the i position

"* draw from the last position to the current position

The current position is the world coordinates of the player at each frame.

In this way, even though the trails are only updated every few seconds, the

trail connects all the way to the vehicle.

4.3.1.9 Model Manager (model-mgr.cc)

The Model Manager is a group of array management utilities specifically

geared toward the mapping of an entity or group of entities to a common

model index. These utilities consist of three major functions, available only

following initialization:

58

get-entity-model Fills the model_index field with the mapping of the
entity (from the DIS standard or other enumerated
list of entities) to a representative model.

get_entity_comment Fills the entity-comment field with a string
describing the entity. Useful for providing string
names as well as numbers for types of entities. For
example, the MIG_31 mapping of 72 has a
comment of "MiG-31 Foxfire."

get_model_comment Fills the model_comment field with a string
describing the model. Useful for providing string
names for models. For example, the F_15 model in
"models/f-15/f15+a.flt" has the comment "F-15."

So, when describing the mapping of entities to models, the developer may

output the easily understood message:

Mapping the MiG-31 Foxfire (entity: 72) to model F-15.

Because the Performer tree encourages multiple instantiations of a shared

model (multiple leaves from the tree with the same root), the logical choice

was to map the various entities to an array, and then manage the array such

that each Model Manager managed only that portion of the array that

concerns its models, as shown in the example set of Model Managers in

Figure 4-1.

This simplified example shows the results of mapping ten separate models

in four Model Managers. The separation of the models into the logical

groupings was a by-product of the Model Manager design, originally there was

orly one Model Manager. The first column holds the local (internal) array

index for the model, the second column is the global index, and the third is

the model file name.

59

Terrain Model Mgr

0 0 redflag.flt
1 1 neyland.flt

Build Model Mgr

0 2 bridge.flt
1 3 building.flt

Net Model Mgr

0 4 m-l.flt
1 5 dest-m-l.flt
2 6 f-16.flt
3 7 molniya.flt

Local Model Mgr

0 8 loc_airfriend.flt
1 9 loc_airfoe.flt

Figure 4-1 A Model Manager Example

//Net Model Mgr

[mocels] 4

0 models /m-l.flt M-1 Abrams Tank
1 models /dest-m-l.flt Destroyed M-1
2 models /f-16.flt F-16 Falcon
3 models /molniya.flt Molniya Satellite

[entities] 9

0 0 1 MI
1 0 1 T80
3 0 1 Jeep
4 2 2 F_15
5 2 2 F16
7 2 2 MiG_29
9 2 2 Su_27
15 3 3 MolniyaSatellite
23 3 3 GESatellite

Figure 4-2 A Model Manager Data File

60

Internal to each Model Manager is another array that maps entity numbers

(a unique identifier for each) to models (Figure 4-2). Models can have

multiple mappings from entities.

4.3.1.10 Clock (clock.cc)

The implementation of the clock was very straightforward. Really, the

clock only formats the time sent to it, returning a properly formatted string or

the input time filled in the "HH MM: ss" format.

4.4 Interface and Other Object Design

With the implementation of the simulation objects complete, I turn next

to the implementation of the interface objects: the Buttons, Drawstring, and

Sounds. The Buttons proved difficult at first, since very little has been done

with transparency, but once the first few Button types were developed and the

majority of design considerations complete, the number and complexity of

buttons grew rapidly. For the Drawstring implementation, I slowly

developed the utilities, one at a time as needed, to meet the various

challenges of the interface design. The Sounds integration was a snap.

4.4.1 Player Button (playbutton.cc)

The player button is a specialized case of the SBB Button, implemented

separately, with only the absolute minimum of data, to provide optimal

performance. The description of the implementation for the SBB Buttons

will also describe the implementation of the player button, only with more

data.

61

4.4.2 SBB Button (button.cc)

As stated in the design section, all of the buttons operate on the same basic

structure:

"* get the mouse coordinates and whether pressed

"• check for intersection with a bl-itton

"* if over a button and mouse pressed,

then perform the button function

"* draw the button

This simple structure provides a power and elegance to the Button class

that appears (at first glance) obvious and straightforward. While I admit that

the result was both of these things, the development was neither. I spent

much of my time during the development and implementation of the

buttons working on a tighter and tighter algorithm for the base class. This

devotion to the base class enabled later derivatives to inherit most of their

behavior and attributes. This allowed rapid development and easy

integration of subsequent additions to the Button class. The member data and

functions for the Button class follows:

t Data Functions

Button position get/set for data members
over & select --
parent & sub drawfn
title & message drawover
colors drawnotover
press -type --
select_lock intersect
value & callback pressed

draw

62

The member data and functions for the derived Buttons follows:

Data Quncns

Rect Button <Button data> <Button functions>
left setrectangle
top ---.-.----- .-.-.-----..-----.----------
right intersect
bottom

Push Button <Rect Button data> <Rect Button functions>
pushed get/set-pushed
off_title -------------

off_message pressed
draw

Light Button <Push Button data> <Push Button functions>
lightrect set_light
lighttype
lightjustification

Hideable Button <Rect Button data> <Rect Button functions>

enable setenable

intersect
pressed
draw

Display Button <Light Button data> <Light Button functions>
display-yalue set/cat/uncat/clear.display
display-prec set/swap/clear-memory
display-position
display
memory

Menu Button <Push Button data> <Push Button functions>

intersect
pressed
draw

The overridden functions for intersect, pressed, and draw allow the

derivative class to modify the behavior of the base class. The overall function

to drawbuttons handles calling the intersect, pressed, and draw functions

for each button in the array, in order.

63

The base class intersect algorithm:

"• if mouse coords > xpos - deltax and

* if mouse coords < xpos + deltax and

* if mouse coords > ypos - deltay and

• if mouse coords < ypos + delta-y then

- mouse is over button

"* if mouse is over button and button not locked then

- button is selected

"* call intersect for sub buttons

The base class pressed algorithm:

"* if button is selected then

* case presstype

- when continuous

> execute callback with value

- when leading-edge

> if mouse has changed state then

- execute callback with value

"* call pressed for sub buttons

The base class draw algorithm:

"* if over the button then

- draw_over the drawfn

"* else

- draw_not_over the draw_fn

"* call draw for sub buttons

64

The draw..fn, drawover, and draw-notover functions shared the same

basic structure, as well. An example follows that draws a titled rectangular

button when not over and a circle on the rectangle when over (with no title).

draw_,fn:

" if filled

- draw filled fn

"* else

- draw unfilled fn

drawover:

"* draw blended transparent rectangle background

"* drawfn (select) => fn = circle

drawnotover:

"* draw blended transparent rectangle background

"* drawfn (false) => fn = title

The final implementation is as simple as the Buttons are powerd. The

base class demonstrates the majority of the attributes of the derived classes, so

I will only discuss the differences in each instead of rehashing the similarities.

4.4.2.1 Rect Button: SBB Button

The Rect Button provides the intersection routines for a rectangular

button. The intersection tests the left, right, top, and bottom. All other base

class data and functions remain the same.

4.4.2.2 Push Button: Rect Button

A Push Button operates based on the state of the pushed value, and has an

off message and title. So the Push Button has the added task of toggling the

65

pushed value when pressed, and checking the pushed value during draw to

see if the regular (on) title/message or the off title/message is displayed.

4.4.2.3 Light Button : Push Button

Light Buttons present the value of pushed as a built-in light on the button.

This light (setup using the set-light call), occupies part of the button

automatically based on the type and justification of the light. Simply, the

light and title are treated as separate buttons linked together to form one.

4.4.2.4 Hideable Button: Push Button

Hideable Buttons override all of the intersect, pressed, and draw functions

to wrap the enable check around them to preclude the wasting time on the

sub buttons or on the button itself if enable is false (hidden). The really tricky

part of the Hideable button is the synchronization of enabling the other

buttons.

Originally, I did not disable selection of other buttons when hiding buttons

(setting enable = false). So if the Hideable button enables a button directly

underneath and the button directly underneath enables the Hideable button,

the result is a very fast cycling between the buttons (because the frame rate is

usually much faster than the duration of the click of the button), with

random results. I fixed this problem by disabling selection of another

Hideable button until the mouse button is released.

4.4.2.5 Display Button : Light Button

This is one of my favorite buttons, because of the power, utility, and

simplicity of the implementation. The Display Button allows the designer to

combine an output with an input in such a way that to change a value the

user just selects the value to change directly from the display, popping up a

66

keypad to enter the numbers. This would be perfect in a simulation

environment where the user has a "Virtual Hand" able to reach out and

touch the interface elements.

I use the Display Button to implement the keypad display (hence the

name) so the user can directly enter numbers into various data fields in the

interface, such as player or view number. Extension to direct entry of position

coordinates or orientation values would be fairly straightforward, I simply

ran out of time.

4.4.2.6 Menu Button: Push Button

The Menu Button groups other buttons into a menu. Selection shows the

subordinate buttons causing the Menu Button to override all of the intersect,

pressed, and draw functions. The change is actually quite small: simply test

the pushed value prior to executing each function for the sub buttons.

Elegant.

4.4.3 Drawstring

The Button classes and other interface elements perform much of the

formatting and printing of text and drawing of geometric and iconic figures to

the screen using the drawstring package of utilities. The package contains

methods for drawing various gauges, information groups, and for formatting

strings, as well as font management interfaces for setting or changing the

current font. I designed this package to handle all drawing of text and non-

Performer graphics images to the screen, using calls within the client objects.

Most of the methods for text/graphics management contained within

Drawstring are portable to other applications.

67

4.5 Problems and Praise

The majority of problems I encountered had little to do with the

implementation of the design, most had to do with modifying other's code or

understanding and using the Performer and GL libraries. The ObjectSim

framework was a dream to work with; elegant in design and flexible in

practice, ObjectSim is a tremendous achievement for Mark Snyder in

particular, and AFIT in general.

I took a week (no kidding, a full week) in May to sit down and try to

understand the ObjectSim design and code, and even though it may not

show, the week was extremely well spent. Unlike others who decided to rely

on Mark Snyder (who I admit came through for most as patiently and quickly

as possible), I wanted to understand and really test the limits of ObjectSim. I

found no major drawbacks or places I would do differently.

4.6 Conclusions

The SBB implementation may have flaws, as expected for the rapid-

prototyping approach, and the significant amount of code involved, but I

designed on paper and tried to work out the potential problems well before

sitting down to write the code. I know the future holds a lot of change for the

SBB and the version next year may little resemble this year's version, but I

did my best and am very proud of the results.

68

S. Results, Future Work, and Conclusions

5.1 Results

An unintrusive system designed to observe and inform on the DIS

environment, the SBB meets the need for an easy to use and consistent

situational awareness enhancement system. The next section holds the

performam.n results achieved as of early November 1993, followed by a few

sections summarizing the overall look and feel of the SBB.

5.1.1 Performance

The system embodies a significant improvement in speed over the

previous version of the SBB, up to five to ten times faster on comparable

equipment. With low numbers of players (<100), the frame rate consistently

exceeds 20 frames per second (fps) and usually pegs at 30 fps. At 500 players,

the frame rate hovers around ten (10) fps; over 1000 players, and the frame

rate drops to around six (6) fps. Unfortunately, we could never test much

higher than around 1200 to 1500 players because the test software caused

numerous network difficulties resulting in frequent drop-offs from the

network and poor test results.

5.1.2 User Interface

The first thing to notice about the SBB User Interface: it's transparent (you

can see through it). As discussed above, the Button class allows me to tailor

the SBB interface to many different possible configurations. Where others

have used the Forms library (18) to develop their interfaces, mine is a direct

route using direct graphics calls and optimized code to allow the user of the

SBB to see through the interface for a good view of the environment without

69

sacrificing screen real estate (see Figure 5-1) or incurring any significant

performance cost.

5.1.21 Transparent Dynamic Display Buttons

In fact, the buttons cause an insignificant slowdown during normal

operations. With all possible buttons active, and much activity, the buttons

incur a slight cost of about one fps, well below a comparable interface

implemented from the Forms library.

Figure 5-1 The Transparent User Interface

My intent throughout has been to maximize user control while

maintaining a dear and uninterrupted view. The different interface areas

become active only when the user places the mouse or other input device

over the desired area. In this way, the display reverts to the simplest form

when the mouse is not over the area, allowing the best view possible into the

environment behind at all times.

70

The virtual buttons respond to user input very quickly. Each interface

area also includes messages (like on-line help) to explain the operation of

each button within the area.

Why did I choose to implement the interface as transparent dynamic

display buttons instead of in the traditional opaque way? The answer goes

back to the non-interface discussion of paragraph 2.2.2; the interface should

intrude as little as possible on the user's view of the environment, a non-

interface. Traditional static interface interface elements offer similar

functionality but unquestionably intrude on the environment. Also,

intrusion constrains the design to a smaller area than possible were the

interface minimally obtrusive.

I also attempted something traditional static interface elements don't

usually do: I made the buttons reconfigure when the user passes the mouse

over them. The reconfiguration (pre-defined by the software developer)

shows lower and lower levels of functionality and the active button that

would fire if the user pressed the mouse button. Providing this feedback,

along with the messages capability, helps the user focus quickly on the desired

area.

The Button class and code care not if the resulting interface is the opaque

traditional static interface or the transparent dynamic display interface, these

features came from the structure and flexibility of the class and the

manipulation of this structure to achieve the desired results. The Button

class is more an Interface toolbox than I at first intended.

5.1.2.2 Views and State

The view button allows the user to enter or cycle to any desired view

using mouse input (See Figure 5-2). Upon selection of the view display

71

button, the Virtual Keypad becomes active and ready for input; the user can

select the view number (the total number of views is set during initialization)

or enter data into any other display field using the keypad.

Figure 5-2 The View & Player Buttons

Each view holds the state information throughout the simulation. If the

user leaves a particular view, all the information about that view is

maintained, including location, orientation, attachment, and player

information. The view becomes inactive, but ready to activate on the next

frame.

Extension of the view button could include previews or multiple views

(sub windows) within the main window. Other extensions could include

management of display information using a view control panel.

72

S.1..3 Players

Like the view button, the player button (also in Figure 5-2) allows the user

to select a particular player in the simulation environment using the player's

position within the active array. Information presented upon selection

includes the object manager ID and the type of entity of the player.

The user can also attach to players by selecting the player's icon from the

Information Grid as shown in Figure 5-3. Each player within the area of the

grid is represented using a symbol and a color, as described in the previous

chapters.

Figure 5-3 The Information Grid

Selection of players using the Information Grid should be extended to

include selection of players and objects within the scene using the mouse or

some other input device, such as a Virtual Hand (the specification as

described above). Selection in this way requires transforming the two-

73

dimensional coordinates of the mouse/VH into the three-dimensional world

coordinates, and then searching for the object that the mouse/VH intersects,

not an easy problem based on the constantly changing environment and the

required number of objects in the scene.

5.1.2.4 Navigation (Position and Orientation)

The user's view within the environment depends on position and

orientation. Modifying either will modify the user's view. The on-screen

controls that allow the user to modify the view are shown in Figure 5-4 (note

that the user cannot modify the roll within the SBB, because of the possible

disorientation this would cause). These controls are based on the standard

aircraft control conventions, as follows:

Orientation:

Heading Pitch Roll

I oto360deg l-90to+90deg1j 0tol80deg I
Position:

North South East West

I 0/360 deg I 180de I 90 deg I 270deg I

The Heading Gauge presents a look to the interface that the user will easily

recognize and interpret. The Translation area (shaped like a throwing star)

allows the user to manipulate the six direction of motion buttons and the

stop button within a single area. The Heading and Pitch controls allow fast or

slow operation, and like all of the dynamic display buttons, the minimal

interface when not in focus.

74

Figure 5-4 The Navigation Controls

5.1.2.5 Interface Manipulation

Knowing that each user may have a particular interest or preference, I

specifically designed the interface to allow each user to modify and enhance

the interface as desired. The user can hide or enlarge buttons or areas,

selectively display the otherwise hidden button characteristics, or remove all

interface elements from the display. The minimal interface includes only the

menu to display the other elements, and in this minimal configuration, the

user can still provide input using the keyboard equivalents for the interface

areas.

5.2 Future Work

Many challenges lie ahead for future SBB and ObjectSim developers.

Mainly, I see a great need for alternate ways of processing player information

75

in the environment, specifically the flat-earth/round-earth conversions and

dead-reckoning; our current algorithms begin to see problems in the

hundreds of vehicles, while with thousands the performance becomes

unbearably slow. Before I get to this problem, and potential solutions, let me

outline other problems not completely addressed in this thesis.

5.2.1 Voice Interaction

The previous iteration of the Synthetic BattleBridge used Voice Navigator

software to enable the user to make one of several commands using voice

only. I did not implement this. I chose instead to implement virtual buttons

(as described in chapters three and four) with the future developer of the SBB

extending these buttons into voice command processing (with visual

feedback), using better voice recognition software. Ideally, the user would

speak the name of a button (or part of the name) and the button would

highlight and select itself as if selected by the mouse.

I think these visual cues combined with the power of a good voice

recognition software may warrant research as a topic all to itself, if it hasn't

already. The integration of such a system, using the present framework,

would not be difficult and would apply to many of the Virtual Reality systems

being developed at AFIT.

5.2.2 In Scene Buttons

Another useful attribute of the flexible Button class would be the ability to

attach a Button to specific places or objects in the scene. I suggest further

development of the Button class to allow the planting of elements in the

scene, instead of just in the formal interface. The designer could associate a

Button to a particular spot in the scene, say for a console switch or button.

76

Seeding the environment with selectable objects that look, behave, and act

correctly is the essence of immersive technology.

The Virtual Cockpit (14 and 15) could greatly benefit from adding "real"

cockpit control buttons (for the radio, weapons selection and arming, etc.) on

the VC console that remain anchored to the correct spot, even should the

viewpoint change. Maybe instead of transparency, the VC could use texture

maps of the actual buttons and switches, and volumetric analysis of a Virtual

Hand to determine intersection.

The volumetric (3D) intersection techniques are a natural extension of the

current planar (2D) intersections and would require no other changes to

employ; the draw function would describe a three-dimensional object, instead

of a two-dimensional object, again a 3D extension of the current 2D design.

Volumetric analysis, assuming accurate position data, could replace selection

of objects using gestures such as swirling of the finger to denote selection.

5.2.3 3D Sound

A useful audio interface is noticeably lacking from the SBB. Due to time

constraints, I made no effort to incorporate the spatially correct sound

hardware received in September 1993. This hardware allows the user to hear

sounds coming from (virtual) behind, or from the side, as in reality.

Used for messages or warnings, spatial audio would enhance the

immersive feeling of the environment and provide means for additional

information presentation.

5.2.4 Selection of Objects in the Scene

I suggest a menu as a means of navigating through the DIS standard to

allow for selection of desired classes or even individual vehicles, countries, or

77

models. This set of menus could be developed using my Menu Button class

described above. The context of a menu selection would depend on other

preceding menu selections, each using a common set of sub-menus; a context-

sensitive waterfall approach.

The repetitive structure for such a selection lends well to the idea of a

menu, even to the point of an on-line DIS standard application that could

drive the object manager.

5.2.5 Efficient Algorithms for Object Processing

As the number of objects in the simulation space continues to increase, I

see a great need for alternate ways of processing these objects. Our current

algorithms begin to see problems in the hundreds of vehicles, while with

thousands the performance becomes unbearably slow.

My colleagues and I (during the lulls in our night shift) have discussed

several ideas on how to combat these problems (though I am solely

responsible for any errors or omissions in the presentation of these ideas). A

summary of each problem with a suggested solution follows.

5.2.5.1 Too Many Objects/Time Slice Processing

The problem of too many objects will not go away. Today thousands,

tomorrow tens of thousands, etc. The only solution that appears to me to

have a chance comes from Mark Snyder, glorious developer of the ObjectSim

framework and all-around Performer guru. He says that he has developed

(recently) a technique to process these objects based on a frame modulus.

That is, use a round-robin (or priority) scheme to process the objects in the

scene so that the frequent slow downs associated with object processing occur

spread out over all frames. This would slow down the overall frame rate, but

78

the appearance of smooth operation and consistent frame rate performance

may be more pleasing to the user.

Another (more expensive) solution would require many more processors.

The idea involves spawning a new Object Manager process on another

processor to scan a particular portion of the network whenever the count of

objects reaches a certain level. The dynamics of this approach appear

daunting to begin with, but think of the huge benefits and possible uses for

dynamic managers of data and stress-tailoring of the simulation

environment.

A good network scanning algorithm could allow for as many vehicles in

the network as processors in the computer. Think of it as buying more object

capacity; a four processor Onyx could handle X number of objects, an eight

processor Onyx say 2X, etc. Of course, the resulting numbers would not be

exactly linear due to the added management time, but the idea could

definitely prove possible and the ticket to very high numbers of objects in the

simulation (for a price).

5.2.5.2 Culling/Drawing Bottleneck/Level of Detail Management

Currently, our model management (within the models themselves)

leaves a great deal to be desired. My development of the Model Manager class

was the first step in the right direction, but more needs to be done. We

currently don't really do any manipulation of the LOD Range capabilities

supplied through Performer, we simply display the models as they exist

within the Flight file. No one actively manages these files, though some

have tried, and we still do not have the right library of models, at least not the

lower and lower resolution of detail that LOD processing requires to work

effectively.

79

At more than a few thousand meters, none of the smaller vehicles can be

seen at the screen resolutions. We see only those models made arbitrarily

large (or using locators), so take them out of the Performer tree (using

pfSwitches of LOD Range values) at the long ranges so no processing time is

required.

5.2.5.3 Unseen Objects Require Processing Too/Range Processing

The last problem I discuss concerns unseen objects, or objects too far away

to see due to distance or orientation. Before processing, figure a way to

determine if the player effects the scene. I know this sounds like culling, but I

mean beyond that, or before that. If an initial test determines that the object

has no affect on the scene, put it in the Process Later stack of objects, which

trades frame rate for accuracy outside the current reasonable viewing horizon.

The internal representation of the state of the whole virtual world may

contain inconsistencies this way, but the apparent view to the user improves

and the performance improves.

5.2.6 Abstract Visualization of Force Distributions

Another potential solution for the object processing problem may lie in

the full abstraction of the battle space and the objects that represent this space.

Since the abstract nature of information visualization allows for greater

flexibility within the SBB for displaying a view into the simulated

environment, the rendered image can take on unreal qualities that aid the

digestion of important information.

The vehicle locators exhibit this abstract quality (see the discussion above).

The extension of this idea to the entire space would greatly enhance the

80

information presentation capabilities of the SBB, as briefly described in the

following paragraphs.

5.2.6.1 Grid Architecture

The main grid would consist of the terrain and related natural and

artificial surfaces such as tress, buildings, bridges, etc. in one of many possible

forms, i.e., terrain height. Other grid layers may consist of Friendly,

Opposing, or Neutral force distributions.

Use of the grid for information processing precludes the rendering of the

terrain and the other objects in the scene and would greatly reduce the

rendering processing required. This grid could also be spawned as its own

process and displayed on an as required basis much like the current location

grid described above.

5.2.6.2 Terrain Partitioning

Plotting the height (above some arbitrary default height) over a grid, by

color of course, would result in squares of potential rough terrain (steep

changes in color) and smooth terrain (little change in color). By analyzing the

grid, terrain influences on the force distributions may become clearer.

Initialization of the grid during startup to determine the appropriate values

may add to the start up time, but this time occurs only once per simulation.

Special color coding of the terrain to indicate buildings, towns, or

population would again enhance the information capabilities.

5.2.6.3 Forces Partitioning

For vehicles/players in the simulation, an individual grid color may

consist of the number of a certain type of aircraft within its confines. Or the

color may indicate the relative strength of forces within the grid section. The

81

possible permutations using colors and forces/location of vehicles and terrain

makes this an endless lesson in deriving information from the battle space.

5.2.6.4 3D Chessboard

By partitioning Friendly and Opposing vehicles into separate grids, the

overlap, based on additive transparent colors, shows the overall force

distributions; a 3D chessboard to manipulate and modify (possibly using

Fuzzy Logic techniques). Or maybe the grid could take on an artificial

intelligence aspect to predict future distributions. Viewed in an immersive

environment, this could become a powerful information presentation tool.

5.3 Conclusions

The Synthetic BattleBridge has come a long way since I first started to

explore the world of Virtual Reality applied to the presentation and

visualization of information in a large battle space. I strived to maintain a

consistent, easy to use, and minimally obtrusive interface while providing

powerful navigation and ,iformation tools to the user. Ease of use (at least in

the sense of self explanatory) with more power continues to drive Virtual

Reality environment research.

The transparent dynamic display interface, though an intuitive

improvement on traditional approaches requires several human-factors

studies and extensive user testing to validate its effectiveness and ease of use

gains. As with any human-computer interaction, if people can use it, they

will use it.

82

References

1. Steuer, Jonathan. "Defining Virtual Reality: Dimensions Determining
Telepresence," Journal of Communication 42(4): 73-93 (Autumn 1992).

2. Regian, J. Wesley, Wayne L. Shebilske, and John M. Monk. "Virtual
Reality: An Instructional Medium for Visual-Spatial Tasks," Journal of
Communication 42(4): 136-149 (Autumn 1992).

3. Biocca, Frank,. "Virtual Reality Technology: A Tutorial," Journal of
Communication 42(4): 23-72 (Autumn 1992).

4. Lanier, Jaron, and Frank Bioccý,. "An Insider's View of the Future of
Virtual Reality" Journal of Communication 42(4): 150-172 (Autumn
1992).

5. Benedikt, Michael, editor. Cyberspace. The MIT Press: Cambridge MA,
1991.

6. Bricken, Meredith. "Virtual Worlds: No Interface to Design," Chapter 13
in Cyberspace. Ed. Michael Benedikt. The MIT Press: Cambridge MA,
1991.

7. Jacob, Robert J. K.. "A Specification Language for Direct-Manipulation
User Interfaces," ACM Transactions on Graphics 5(4): 283-317 (October
1986).

8. Falby, John S., Michael J. Zyda, David R. Pratt, and Randy L. Mackey.
"NPSNET: Hierarchical Data Structures for Real-Time Three-
Dimensional Visual Simulation," Computers & Graphics 17(1): 65-69
(1993).

9. Haddix H, Rex G. An Immersive Synthetic Environment for Observation
and Interaction with a Large Volume of Interest. MS thesis,
AFIT/GCS/ENG/93M-02, School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, March 1993.

10. Sheasby, Steven M. Management of SIMNET and DIS Entities in
Synthetic Environments. MS thesis, AFIT/GCS/ENG/92D-16, School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson
AFB OH, December 1992.

11. Soltz, Brian. Graphical Tools for Situational Awareness Assistance for
Large Battle Spaces. MS thesis, AFIT/GCS/ENG/93D-21, School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson
AFB OH, November 1993.

83

12. Snyder, Mark. ObjectSim - A Reusable Object-Oriented DIS Visual
Simulation. MS thesis, AFIT/GCS/ENG/93D-20, School of Engineering,
Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
November 1993.

13. Wright, Charles, and Brian Soltz. Macintosh Sound Generation Facility
2.0. Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
15 November 1992.

14. Erichsen, Matt. Weapon System Sensor Integration for a DIS-Compatible
Virtual Cockpit. MS thesis, AFIT/GCS/ENG/93D-07, School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson
AFB OH, November 1993.

15. Gerhard, William. Weapon System Integration for the AFIT Virtual
Cockpit. MS thesis, AFIT/GCS/ENG/93D-10, School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH,
November 1993.

16. Gardner, Michael. A Distributed Interactive Simulation Based Remote
Debriefing Tool for Red Flag Missions. MS thesis,
AF1T/GCS/ENG/93D-09, School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, November 1993.

17. Kunz, Andrea. A Virtual Environment for Satellite Modeling and
Orbital Analysis in a Distributed Interactive Simulation. MS thesis,
AFIT/GCS/ENG/93D-14, School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, November 1993.

18. Overmars, Mark H. Forms Library: A Graphical User Interface Toolkit for
Silicon Graphics Workstations v2.1. Department of Computer Science,
Utrecht University, Utrecht, the Netherlands, November 10, 1992.

19. FakeSpace Labs. BOOM2/BOOM2C Operations Manual. April, 1992.

20. Silicon Graphics. Performer Programming Guide. September, 1992.

84

Vita

Captain Kirk Wilson entered the United States Air Force in 1983 as a

Computer Operator. Selected to attend Arizona State University under the

Airman's Education and Commissioning Program (AECP) while stationed at

Sunnyvale AFS, California, Kirk earned a Bachelor of Science in Aerospace

Engineering in May 1989.

Kirk joined the Joint Tactical Information Distribution System (JTIDS)

Joint Program Office for his first assignment following graduation from

Officer Training School. He gained acceptance to the Air Force Institute of

Technology in 1992 and completed his Master of Science in Computer

Systems in 1993.

Kirk hopes to never see Maui again.

85

=,. i IForm Approved

REPORT DOCUMENTATION PAGE OM No0o74-0o

1. AGENCY USE ONLY (Leive blank) 2. REPORT DATE 93 REPORT TYPE AND DATES COVERED
1.~~~~ ~~ AGNYUEOL ev in) December 1993 Master's Thesis

4. TITLE AND SUBTITLE .5 FUNDING NUMBERS

Synthetic BattieBridge:
Information Visualization and User Interface
Design Applications in a Large Virtual Reality" Environment

6. AUTHOR(S/

Kirk G. Wilson, Captain, USAF

*7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION

Air Force Institute of Technology, WPAFB OH 45433-6583 REPORT NUMBER

AFIT/GCS/ENG/93D-26

9. SPONSORING MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING MONITORING
AGENCY REPORT NUMBER

ARPA/ASTO
3701 North Fairfax Drive
Arlington, Va 22203

S11. SUPPLEMENTARY NOTES

1 12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT x,, rn,.mu 2f,.C1? .ords)

With shrinking budgets and fewer personnel, future military training will rely heavily on simulated e'nvironmenIts.
The goal for this training is to reduce cost while maintaining readiness and unparalleled capability fOr all levels
of military command. This thesis effort, the Synthetic BattleBridge (SBB), provides a real-timle simulated

environment for military commanders to observe on-going computer simulations of varying participation levwe

and helps them wring the most from a simulation. The SBB, designed for higher ranking personnel with little
time to spend learning how to run the system, must exhibit three capabilities: ease-of-use, long-term retention,
and adaptability. Based on the ObjectSim framework and the Object Manager network manaement softwate,
the SBB includes a unique transparent interface with dynamic display ,le,,itts that ensures minimal intrusion.
Tbe SBB provides multiple views and direct attacLment to simulation players, along with an information grid
showing the distribution of forces within the current environment.

14. SUBJECT TERMS ,5. NUMBER OF PAGES

User Interface, Situational Awareness, Synthetic Environments, 95

Object-Oriented, Computer Graphics 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

%SIN 75110-O ; C S2aca8- 1 . I Fev R9

